Major element heterogeneity in the mantle source of the North Atlantic igneous province

نویسندگان

  • Jun Korenaga
  • Peter B. Kelemen
چکیده

High-MgO (s 8.5 wt%), aphyric lavas erupted at various locations in the North Atlantic igneous province are utilized to characterize the nature of mantle melting during the formation of this province. Based on the observation that the Ni concentration in residual mantle olivine mostly falls in the range of 2000^3500 ppm, these high-MgO samples are corrected for olivine fractionation until the Ni concentration of equilibrium olivine reaches 3500 ppm, to estimate the composition of primary mantle-derived melt. Estimated primary melt compositions suggest that this province is characterized by significant major element source heterogeneity possibly resulting from basalt addition prior to melting. Primary melts for Southwest Iceland and Theistareykir (North Iceland) are shown to require different source mantle compositions. Whereas the Theistareykir primary melt may be explained by the melting of pyrolitic mantle, the source mantle for Southwest Iceland must be enriched in iron, having molar Mg/(Mg+Fe), or Mg#, 6 0.88. This compositional dichotomy in Iceland seems to continue to adjacent Mid-Atlantic Ridge segments, i.e. the Kolbeinsey and Reykjanes Ridges. The primary melts for East and Southeast Greenland also indicate a fertile mantle source, and the estimate of Mg# is the lowest for the East Greenland source mantle (6 0.87). The inferred spatial extent of source heterogeneity suggests the presence of a long-lived compositional anomaly in this igneous province since the opening of the North Atlantic. ß 2000 Elsevier Science B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Co-location of eruption sites of the Siberian Traps and North Atlantic Igneous Province: Implications for the nature of hotspots and mantle plumes

In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit: a b s t r a c t a r t i c l e i n f o Keywords: Siberian trap basalts mantle plume large igneous provinces One of the striki...

متن کامل

Methods for resolving the origin of large igneous provinces from crustal seismology

[1] We present a new quantitative framework to understand the process of mantle melting based on the velocity structure of igneous crust. Our approach focuses on the lower crustal section, which is expected to be least affected by porosity and seawater alteration, especially for thick igneous crust. Our methodology is thus best for constraining the origin of large igneous provinces. First, a qu...

متن کامل

Mantle mixing and continental breakup magmatism

The frequent formation of large igneous provinces during the opening of the Atlantic Ocean is a surface manifestation of the thermal and chemical state of convecting mantle beneath the supercontinent Pangea. Recent geochemical and geophysical findings from the North Atlantic igneous province all point to the significant role of incomplete mantle mixing in igneous petrogenesis. On the basis of a...

متن کامل

Mineral chemistry of apatite in the Lar igneous complex, North of Zahedan

The Lar igneous complex (LIC) is located in the Sistan Suture Zone. The igneous rocks occur as stock, dike, lava and pyroclastic. As a result of hydrothermal fluids, Cu-Mo mineralization was formed in the stocks. Apatite is one of the most abundant accessory minerals in the igneous rocks that occurs as prismatic and brecciated. EPMA data indicate that apatites are fluorapatite in composition wi...

متن کامل

Origin and Source Evolution of the Leucite Hills Lamproites: Evidence from Sr–Nd–Pb–O Isotopic Compositions

Whole-rock major and trace element and O, Sr, Nd and Pb isotopic data are reported for 3.0–0.89 Ma lamproites from the Leucite Hills, Wyoming, USA. The two main groups of lamproites, madupitic lamproites and phlogopite lamproites, are geochemically distinct and cannot be related to one another by either fractional crystallization or crustal contamination. It seems likely that the geochemical di...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000